
Maja Rudolph | Research Statement
Increases in computing power have led to impressive leaps in the performance of deep
learning systems. However, these methods are not yet reliable enough to be deployed in
many critical applications. Even when trained on enormous amounts of clean and labeled
data, they fail in unpredictable ways when the deployment environment changes. Moreover,
they often assume that the training data is i.i.d. (independently and identically distributed),
while in many important settings the data is correlated in interesting ways.

This raises the following questions: How can we learn from unlabeled and potentially
contaminated data? How can we distill the information encoded in a dataset into reusable
representations? How can we combine the flexibility of neural networks with principles of
probabilistic modeling to learn distributions over structured data such as time series?

To answer these questions, I develop novel machine-learning methods at the intersection of
deep learning and probabilistic modeling. There are two main threads in my research:

• In my first research direction, deep probabilistic sequence models, I study how to best
combine probabilistic modeling and deep learning to model time-series data.

• In my second research direction, neural transformations and embeddings, I develop
unsupervised and self-supervised methods for anomaly detection and representation
learning. These methods are particularly suited for unlabeled data.

Research Direction 1: Deep Probabilistic Sequence Models

Many types of data reveal themselves to us sequentially. Examples include video, neural
firing patterns, financial market data, or sequential sensor measurements in engineering.
Machine-learning methods for such data can lead to new scientific insights, aid decision
making, or increase the utility of engineering devices by improving their efficiency or
enabling new features. However, learning from sequential data requires methods that are
flexible enough to capture complex relationships in the data (deep learning) while handling
various types of noise and uncertainty (probabilistic modeling).

Below are two specific examples of deep probabilistic sequence models that I developed
jointly with my students to address challenges arising from industrial applications.

Modeling irregular time series. Common issues in dynamics modeling for industrial
applications are that different sensors are usually not synchronized, sampling rates can be
irregular, and some sensors are only partially observed. A typical approach is to interpolate
the inputs before applying a standard deep-learning method, such as a recurrent neural
network (RNN). The continuous recurrent unit (CRU) [ICML 2022a] does not require this
heuristic pre-processing step. Like an RNN, it maintains a latent state which is recursively
updated based on observations. After each observation is encoded by a neural network,
the CRU uses the continuous formulation of a Kalman filter to optimally integrate the new
information into its latent state. The result is a practical neural architecture that handles
irregularly sampled time-series data naturally.

Forecasting multimodal dynamics. Another modeling challenge is that many real-world
time-series datasets are highly multimodal: at any given part of an observed sequence, there
are multiple plausible continuations (e.g. a car could turn right or left at an intersection)
but the average of these behaviors is unlikely or even physically impossible. Most deep
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probabilistic sequence models struggle with multimodality since their modeling assump-
tions and training objectives encourage averaging. To address this, we have developed a
new approximate inference method for sequential latent variables that is multimodal by
construction [Entropy 2021]. The key idea is to marginalize over past states instead of
conditioning on them, as in previous work. Our approach improves forecasting in several
real-world datasets, including taxi trajectories, movement patterns of basketball players,
and pollution levels over time.

Research Direction 2: Neural Transformations and Embeddings

Pressing challenges for machine-learning research can also be encountered in manufacturing.
Production facilities generate large amounts of sensor data, which can be processed with ma-
chine learning to make production more efficient or to automate quality inspection.

Data collected during day-to-day usage of an assembly line will typically not be labeled.
For this reason, unsupervised and self-supervised methods are needed to make sense of
production data. I will describe two classes of methods from this category: self-supervised
anomaly detection and embeddings for learning interpretable representations.

2.1. Neural Transformations for Anomaly Detection

In self-supervised learning, auxiliary tasks replace labels as the prediction targets. Models
trained on these tasks can then be used for anomaly detection or feature extraction. While
there has been extensive work in self-supervised anomaly detection on images, many
industrial applications require us to detect abnormalities in other types of data, such as
time series (e.g. abnormal process curves of a drill), graphs (e.g. for detecting abnormal
molecules in a chemical process), or events within a time series (e.g. for intrusion detection
in a water distribution system).

Self-supervised learning in computer vision often relies on image transformations such as
rotations, cropping, and blurring to construct auxiliary tasks. Applications of these methods
to industrial data have been limited since it is difficult to manually design appropriate data
transformations for specialized domains. To overcome this challenge, we have developed
neural transformations [ICML 2021, ICML 2022b]. We treat the transformations like model
parameters and thereby can learn appropriate transformations from the data.

Our main contribution is a novel training objective that encourages the neural transforma-
tions to generate alternative views of the data that are diverse, yet characteristic of the
original input. We prove that optimizing this objective avoids the trivial solutions (identity
or constant) that one would encounter with existing losses. Neural transformations achieve
state-of-the-art results for anomaly detection of entire time series and tabular data [ICML
2021], of windows within time series [SSL 2021], and on graphs [IJCAI 2022].

Deep one-class classification (OCC) is another popular self-supervised approach for anomaly
detection. While deep OCC works well on images, the optimal solution of the OCC objec-
tive is trivial and cannot be used for anomaly detection. We prove in [IJCAI 2022] that
combining OCC with transformation learning completely resolves this issue. The theoretical
findings are supported by our empirical results where our combined method, one-class graph
transformation learning, achieves the highest accuracy in detecting abnormal graphs.
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Neural transformations have another advantage. Since the data transformations are not
crafted by hand but are instead learned by neural networks, we can apply data augmentations
to data types that we have less intuition about than natural images. In fact, we can even
apply the neural transformations in an abstract feature space [NeurIPS 2017, SSL 2021],
sometimes called the embedding space. The embedding vector of each data point captures
characteristics of the data that are useful for neural networks but not necessarily accessible
to human interpretation. Their abstract nature makes it hard to design transformations by
hand but lends itself to neural transformations.

2.2. Embedding Methods for Learning Interpretable Representations.

Embeddings are a powerful tool for working with high-dimensional data. Word embeddings,
for example, capture semantic similarity among terms in a vocabulary and are useful inputs
for downstream tasks [PNAS 2020]. To make them applicable to other types of data, we
have developed exponential family embeddings [NeurIPS 2016], which can be combined
with a dynamic prior to study how similarities change over time [WWW 2018]. There is a
great potential for employing embeddings in data-driven manufacturing. Embeddings that
capture the characteristics of parts, stations, or production steps can simplify tasks such as
root-cause analysis and reduce the amount of training data required for prediction.

Future Work

My work on time-series models has focused on integrating probabilistic approaches into
recurrent neural networks to address challenges ranging from multi-modality [Entropy
2021] to irregularly sampled observations [ICML 2022a]. Other interesting challenges
include the multi-scale setting, where the underlying dynamics have multiple time scales,
and the continual learning setting, where the distribution associated with the deployment
environment keeps shifting. In terms of method development, the probabilistic tools I have
used to improve on RNNs could also be beneficial for other deep sequence models, such as
transformers, which have been outperforming RNNs in many settings.

My work on neural transformations [ICML 2021, ICML 2022b, IJCAI 2022] enables
self-supervised anomaly detection in specialized domains with data types beyond images.
Another very important area is self-supervised representation learning. Here, the neural
transformations we have developed are not yet on par with other techniques for data
augmentation. Contrastive losses derived from alternative information-theoretic criteria may
yield the right loss functions for learning neural transformations for representation learning.
More powerful neural transformations would in turn lead to improved representation
learning algorithms for less-studied data types including time series, tabular data, and
graphs, which often occur in engineering, scientific, and medical applications.

The power of deep learning comes from its ability to distill information into distributed
representations. These representations provide an embedding space in which many machine-
learning tasks (e.g. prediction) are easier to solve. While there are analogies between
embedding methods and models of language processing in the brain, some aspects of hu-
man cognition (common sense, hierarchical categorization, causal understanding, physical
intuition) are not well reflected in current machine-learning embedding models [PNAS
2020]. I hope to address this in future work.
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